metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong-Xia Xu,^a Jian-Ping Ma,^a Ru-Qi Huang^a and Yu-Bin Dong^b*

^aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China, and ^bCollege of Chemistry, Chemical Engineering and Materials Science, and Shandong Key Laboratory of Functional Chemical Materials, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail: yubindong@sdnu.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.003 Å R factor = 0.026 wR factor = 0.067 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetraaquabis[5-(4-pyridyl)-1,3,4-oxadiazole-2-thiolato- κN^4]zinc(II) dihydrate

In the structure of the title compound, $[Zn(C_7H_4N_3OS)_2-(H_2O)_4]\cdot 2H_2O$, the Zn^{II} atom, located on an inversion centre, is coordinated by the pyridyl groups of two oxadiazole ligands and four water molecules. The packing is dominated by a three-dimensional system of hydrogen bonds.

Comment

1,3,4-Oxadiazole ring-containing organic spacers are widely used to construct luminescent materials by incorporating them into all-organic or inorganic–organic composite species (Lee *et al.*, 2001; Wang *et al.*, 2001). This paper deals with the preparation and crystal structure of the title coordination compound, (I), which falls into this category (Fig. 1)

The Zn^{II} atom of (I), located on an inversion centre, exhibts a distorted octahedral coordination (Table 1). It is coordinated by two pyridyl N atoms from the 5-(4-pyridinyl)-1,3,4oxadiazole-2-thiolate ligands and four O atoms from water molecules. Two additional water molecules are not directly coordinated to the Zn^{II} atom, but do contribute to the extensive three-dimensional hydrogen-bonded network, which involves all possible donor atoms (Table 2 and Fig. 2).

Figure 1

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved The structure of (I), drawn with 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (A) -x + 1, -y + 2, -z + 1.]

Received 17 October 2005 Accepted 26 October 2005

Online 5 November 2005

Figure 2

A packing diagram for (I), with hydrogen bonds shown as dashed lines.

Experimental

To a solution (20 ml) of Zn(ClO₄)₂·6H₂O (0.063 g, 0.1 7 mmol) in water, NaOH (0.0068 g, 0.17 mol) and 5-(4-pyridyl)-1,3,4-oxadiazole-2(3H)-thione (0.030 g, 0.17 mol) were added and the solution stirred for a few minutes. The solution was then left for about 2 d at room temperature and yellow crystals of (I) were obtained.

Crystal data

$[Zn(C_7H_4N_3OS)_2(H_2O)_4]\cdot 2H_2O$	Z = 1
$M_r = 529.85$	$D_x = 1.682 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 7.028 (4) Å	Cell parameters from 2297
b = 7.981 (5) Å	reflections
c = 9.690 (6) Å	$\theta = 2.7 - 27.8^{\circ}$
$\alpha = 90.414 \ (8)^{\circ}$	$\mu = 1.43 \text{ mm}^{-1}$
$\beta = 90.672 \ (7)^{\circ}$	T = 298 (2) K
$\gamma = 105.677 \ (7)^{\circ}$	Block, yellow
V = 523.2 (5) Å ³	$0.45 \times 0.20 \times 0.18 \ \text{mm}$
Data collection	
Bruker SMART CCD area-detector	1823 independent reflections

1

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.566, T_{\max} = 0.783$
2684 measured reflections

Refinement

*
1764 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.014$
$\theta_{\rm max} = 25.0^{\circ}$
$h = -8 \rightarrow 8$
$k = -4 \rightarrow 9$
$l = -11 \rightarrow 11$

 $w = 1/[\sigma^2(F_0^2) + (0.0342P)^2]$ + 0.1713P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$

Table 1		_	
Selected	geometric parameters	(Å,	°).

Zn1-N3	2.1179 (18)	Zn1-O3	2.1515 (18)
Zn1-O2	2.1181 (16)		
$N3-Zn1-N3^{i}$	180	$N3^i - Zn1 - O3$	91.66 (7)
$N3-Zn1-O2^{i}$	87.25 (7)	O2-Zn1-O3	89.61 (8)
N3-Zn1-O2	92.75 (7)	O2-Zn1-O3 ⁱ	90.39 (8)
$O2^i - Zn1 - O2$	180	O3-Zn1-O3 ⁱ	180
N3-Zn1-O3	88.34 (7)		

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 2			
Hydrogen-bond g	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
O3−H1 <i>O</i> 3···S1 ⁱⁱ	0.84	2.42	3.246 (2)	167
O2−H2O2···S1 ⁱⁱⁱ	0.84	2.42	3.247 (2)	167
O2−H1O2···O4 ^{iv}	0.86	1.94	2.793 (2)	171
$O4-H2O4\cdots N1^{v}$	0.85	1.92	2.778 (3)	179
O4−H1O4···N2 ^{vi}	0.86	2.06	2.915 (2)	177
O3−H2 <i>O</i> 3···O4	0.86	1.96	2.773 (2)	158

Symmetry codes: (ii) -x + 1, -y, -z + 2; (iii) x, y, z - 1; (iv) x - 1, y, z; (v) x + 1, y + 1, z - 1; (vi) -x + 1, -y, -z + 1.

H atoms bonded to C atoms were included in calculated positions. Other H atoms were located in a difference map. All H atoms were refined using a riding model, with C-H = 0.93 Å and $U_{iso}(H) =$ $1.2U_{eq}(C)$, and O-H = 0.71-0.99 Å and $U_{iso}(H) = 1.2U_{eq}(O)$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

The authors are grateful for financial support from the National Natural Science Foundation of China (grant No. 20371030) and Shandong Natural Science Foundation (grant No. Z2004B01).

References

- Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.06a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
- Lee, D. W., Kwon, K.-Y., Jin, J.-I., Park, Y., Kim, Y.-R. & Hwang, I.-W. (2001). Chem. Mater. 13, 565-574.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Wang, J., Wang, R., Yang, J., Zheng, Z., Carducci, M. D., Cayou, T., Peyghambarian, N. & Jabbour, G. E. (2001). J. Am. Chem. Soc. 123, 6179-6180.